
KSME International Journal, VoL 18 No. 7, pp. 1203 ~ 1212, 2004 1203 

Composite Overlapping Meshes for the Solution of Radiation 
Forces on Submerged-Plate 

Gil-Young Kong*, Sang-Min Lee, Yun-Sok Lee 
Department o f  Ship Operating Systems Engineering, Korea Maritime University, 

Dongsam-Dong, Youngdo-Gu, Pusan 606-791 Korea 

The purpose of this study is to predict and understand the hydrodynamic forces and their 

nonlinear behaviors of fluid motion around the submerged plate oscillating near a free surface. 

To achieve this objective, we have developed a composite grid method for the solution of a 

radiation problem. The domain is divided into two different grids ; one is a moving grid system 

and the other is a fixed grid system. The moving grid is employed for the body fitted coordinate 

system and moves with the body. This numerical method is applied to calculation of radiation 

forces generated by the submerged plate oscillating near a free surface. In order to investigate 

the characteristics of the radiation forces, the forced heaving tests have been performed with 

several amplitudes and different submergences near a free surface. These experimental results are 

compared with the numerical ones obtained by the present method and a linear potential theory. 

As a result, we can confirm the accuracy of the present method. Finally, the effect of nonlinear 

and viscous damping has been evaluated on the hydrodynamic forces acting on the submerged 

plate. 
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1. Introduction 

There are many studies about the hydroelas- 

tic response of a Very Large Floating Structure 

(VLFS), and some of them have proposed a 

breakwater to reduce hydroelastic deformation. 

Takaki et al.(2001) proposed a newly-designed 

floating breakwater system that could increase 

the merits of VLFS. The system consists of Floa- 

ting Breakwater using Submerged Plate (FBSP) 

and VLFS with attached submerged plate. The 

submerged plate built into VLFS is called as 'the 

third submerged plate'. Fujikubo et al. (2002) and 

Takaki et a1.(2002) carried out the studies of 
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effect of the third submerged plate to reduce the 

hydroelastic response of VLFS. In particular, it 

has made clear that the third submerged plate 

can reduce the wave exciting force in short waves 

(Takaki et al., 2002). 

The free surface effect can strongly influence 

the added mass and damping coefficient values 

as a function of frequency when the submerged 

body oscillates near a free surface (Chung, 1977). 

The flow is highly nonlinear even at very small 

amplitude of oscillation, when the body is slightly 

submerged. The purpose of this study is to pre- 

dict and understand the hydrodynamic forces and 

their nonlinear behaviors of fluid motion around 

the submerged plate oscillating near a free sur- 

face. To achieve this objective, we have developed 

a composite grid method for the solution of a 

radiation problem. In case of the radiation prob- 

lem, it is difficult to deal with the relative motion 

between the moving body and free surface. Thus, 

we divide the domain into two different grids; 
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one is a moving grid system and the other is a 

fixed grid system. The moving grid system is em- 

ployed for the body fitted coordinate at the sub- 

merged plate, and it is forced to oscillate sinusoi- 

daily with the body. The advantages of  this ap- 

proach are that the complex domain is dealt with 

more easily and it can be used to follow the 

moving body. 

This numerical method is applied to calcula- 

tion of the radiation forces generated by the sub- 

merged plate oscillating near a free surface. In 

order to investigate the characteristics of the ra- 

diation forces, we have performed the forced 

heaving tests with several amplitudes and differ- 

ent submergences near a free surface. These ex- 

perimental results are compared with the numeri- 

cal ones obtained by the present method and a 

linear potential theory, and we discuss the effect 

of nonlinear and viscous damping on the hydro- 

dynamic forces acting on the submerged plate. 

2. Overlapping Grid System 

2.1 Composite grid method 
The composite grid method has some attractive 

features. Firstly, the composite grid method uses a 

set of independent overlapping grid systems, and 

the flow information is transferred from one grid 

to another by an interpolation procedure. Thus, 

one is able to divide the domain into different 

blocks and adapt the best type of grid and reso- 

lution necessary to each other. Therefore, higher 

resolutions can be used in some part of the phys- 

ical domain where it is necessary. Another great 

advantage of the composite grid method is its 

ability to handle body motions without regenera- 

tion of the grid at each time step as for the single 

grid system. In such a case, the overlap region 

changes with time and has to be determined toge- 

ther with the interpolation factors after time step. 

The only addit ional effort is the interpolation 

from one reference frame to the other at the in- 

terfaces. Grids of this kind are called Chimera 
grids in the literature. 

The composite grid, which is used in this study, 
consists of two different grid systems, one is a 

moving grid system and the other is a fixed grid 
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Fig. 1 Overlapping grid system 

system. The moving grid system is applied for 

the submerged plate oscillating near a free sur- 

face to deal with the relative motion between the 

moving plate and free surface, while the fixed 

grid system covers the surrounding of moving 

grid and whole of the computational  domain. 

The flow information is transferred from one grid 

to another by an interpolation procedure. Figure 

1 shows the overlapping grid system along with 

the close up view of the overlapping region. 

The pressures are computed simultaneously on 

the entire flow field until convergence, while the 

momentum equations are solved independently 

on each sub-domain.  Schwarz had proposed an 

alternating solution procedure for the elliptic 

function problems (Hinatsu and Ferziger, 1991). 

Therefore the Schwarz iteration is used to calcu- 

late the pressure equation over the composite 

grid. 

In order to use the Schwarz iteration, we need 

the interior boundary value which lays in the 

overlap region and is obtained by interpolating 

from the other grid. 

The algorithms are as follows; 

(1) Calculate the pressure on gr id-I  using the 

interior boundary value. 

(2) The interior boundary value for gr id- I I  is 

obtained by interpolation on gr id- I .  
(3) Calculate the pressure on g r id - l l  using the 

interior boundary value. 

(4) Update the interior boundary value for 

gr id-I  using the interpolated data from gr id- I I .  

(5) Repeat (1)-(4)  steps until the solution 

converges. 

2.2 Interpolation method 
The Newton-Raphson interpolation method is 

employed at the different grids to transmit the 
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Fig. 2 Transformation of physical coordinate for 
Newton-Raphson interpolation 

flow data from one grid to another. 

The overlap regions change with time and 
flagging of all the grid points is performed after 
each time step. In the overlap region, boundary 
conditions for one grid are obtained by inter- 
polating from the other grid. 

The interpolated data can be expressed by 

¢ =  ( I - - X ) ( 1 - Y ) ¢ A + X ( 1 - Y ) ¢ 8  (I) 
+ X Y ¢ c +  (l - x )  Y¢o 

where ¢ is the interpolated flow data, Ca, fiB, 
¢C and ¢0 are the value at the corner A,  B, C 
and D of  the cell, respectively. (X, Y) is the 
local coordinate of  the interpolation point in the 
transformed system obtained by solving the fol- 
lowing equations ; 

x =  ( l - X )  ( 1 -  Y)x~+X(I-  Y)x, 
(2) 

+ X Y x c +  ( 1 - X )  Yxo 

y =  ( l - - X )  (1-- Y ) y A + X ( 1 -  Y)YB 
(3) 

+ X Y y c +  ( 1 - X )  Yy.  

where (x, y) is the physical coordinate of the 
interpolated point. 

Figure 2 shows the transformation of  the phys- 
ical coordinate to the local coordinate by using 
the Newton-Raphson interpolation method. 

3. Numerical  Procedure 

where p is the fluid density, U : -  (u, w) the fluid 
velocity vector, V the moving velocity of grid, 
P the pressure, V the gradient operator, ~ the 
kinematic viscosity, and g is the gravitational 
acceleration. By comparing with the fixed grid 
system, velocity of  the moving grid is included 
in the convective terms (Demirdzic and Peric, 
1990). The same Eqs. (4) and (5) are used for the 
fixed and moving grids except that the moving 
grid velocity V becomes zero on the fixed grid. 
The computational procedure is similar to the 

modified TUMMAC-Vwv method which incor- 
porate the subgrid-scale (SGS) turbulent model 
(Lee et al., 1990). 

The velocity components are advanced expli- 
citly and the pressure is obtained by solving a 
Poisson equation simultaneously using the Sch- 
warz iterative method on the entire domain. The 
momentum equations are solved independently 
on each sub-domain. Interpolation on the over- 
lapping grids is computed by the Newton-Ra- 
phson method. 

Zero-normal gradient conditions are given for 
the velocity and pressure at the bottom and out- 
flow boundaries of the computational domain. 
We assume the axis symmetry condition on the 
center of entire domain. 

The body is forced to heave in the form of 

z (t) =za  sin (cot) (6) 

where za is the amplitude of oscillation. On the 
body surface, no flux and no slip conditions are 
imposed by 

u : 0 ;  w:z~co cos(cot) (7) 

The body is set into motion from a quiescent 
state, that is, the velocity and free surface eleva- 
tion are zero at initial time t----0. 

The governing equations are the Navier-Stokes 
equation and the continuity equation for 2-di- 
mensional, incompressible and viscous fluid. 
They can be written as 

V. U = O  (4) 

~ U  _~_ V . (U-  v) u = -  v~P +~v2U-g (5) 
3t p 

4. Application of the Composite 
Grid Method 

The convergence tests of  vertical and horizont- 
al cell size to determine the suitable condition 
of computation for the modified MAC method 
were carried out by Park et al. (2001). Figure 3 
shows the results of numerical convergence tests 
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performed by Park et al. for horizontal and ver- 

tical cell size, where Nx and Nz indicate the 

number of cells in a wave length and height. The 

results seem to converge as the discretized num- 

bers increase. It is evident that the mesh size has 

to be chosen small to achieve the desirable accu- 

racy. 

In order to validate the numerical scheme in 

this study, the numerical convergence tests are 

carried out for generation of the regular waves. 

The wave period, T,  is lsec, the wave length,/1, 

1.56 m, and wave height, H ,  0.04 m. Two cases 

of numerical simulation with coarser (Ax=/1/40, 

Az=H/ IO)  and finer (Ax=/1/50, A z = H / 2 0 )  
conditions are tested. Figure 4 shows the depen- 

dency of  grid size through comparison of wave 

elevation. It is apparently seen that the genera- 

tion of regular waves are simulated better for 

finer grid system than for coarser grid. Thus, we 
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Fig. 4 Comparison of simulated wave elevation for 

regular waves 

adapted this finer grid for the numerical simula- 

tion to solve the radiation problem. 

4.1 Comparison with the mono-grid system 
We have carried out the numerical simulation 

to compare with the mono-grid system using the 

rectangular model correspond to length (L) = 100 

mm, submergence (d) =50  mm, amplitude (za) = 

5 mm, and oscillation period (T)  = 1.0 seconds. 

This computation is to check the Schwarz itera- 

tion and interpolation method, thus we do not 

move the rectangular model and inner grid. In- 

stead, we give the velocity on the body surface for 

the body boundary condition. Figures 5 and 6 

show the pressure contours and velocity vector 

fields on both composite and mono-grid.  Com- 
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Pressure contour for T =  1.0 see., d=0.05 m, 

Za=0.005m of (a) Mono-grid and (b) 

Composite grid 
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parison of  the composi te  grid with m o n o - g r i d  

shows reasonably good agreement. Therefore  we 

apply the composi te  grid method to the submerg- 

ed plate oscil lat ing near a free surface. 

4.2 Results and discussion 
The forced heaving tests have been performed 

to investigate the characteristics of  hydrodyna-  

mic forces on the submerged plate in a two-d i -  
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Fig. 6 Velocity vector field for T =  1.0 sec., d=O.05 m, z==0.O05 m of (a) Mono-grid and (b) Composite grid 
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mensional wave tank. The height of radiation 

wave is measured at a distance of 5 m from the 

center of the model. The forced oscillation experi- 

ments have been conducted for the 1/50 scale 

model under the different test conditions ; d = 2 0 ,  

40 and 60 mm, Za = 10, 20 and 30 mm, T = 0 . 8 -  

2.6 seconds. We also have carried out the numeri- 

cal simulation based on the composite grid meth- 

od under the above assumptions. 

Figures 7 and 8 show the velocity vector fields 

of the submerged plate corresponding to the 

short oscillation period ( T = 0 . 8  sec.) and long 

oscillation period ( T = 2 . 2  sec.), d = 4 0  mm, and 

z a = 1 0 m m .  Here, the inner grid is moving with 

the submerged plate. It can be observed that the 

flow incoming from the end of the submerged 

plate is splashed above the plate. Upon splashing, 

the surface flow is joined to the outgoing wave. 

It is shown that the free surface is connected 

smoothly between the moving grid and fixed 

grid system, and the radiation waves are properly 

propagated to outward direction. At the long 

oscillation period, it can be seen that the vortex 

ring generated at the edge of the submerged plate 

is transported to the outward direction under- 

neath the free surface (see Fig. 8). From Figs. 7 

and 8, it is clear that the spatial evolution of  

vortex structure depends on the frequency of  

oscillation. One can show that the vortical com- 

ponent of hydrodynamic force is related to the 

moment of vorticity (Lighthill, 1986). Thus, it 

becomes apparent that the vortical force would 

depend on the frequency of  oscillation. According 

to this fact, it is considered that the generation of 

vortex is affecting to the damping forces on the 

moving body at the long oscillation periods. 

The free surface non-l ineari ty and the inter- 

action between wave and body-generated vortical 

motions could be a significant factor affecting 

the hydrodynamic forces on the body. Thus, we 
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have performed the numerical simulation based 

on the composite grid method for the solution of 

the radiation problem in viscous fluids. Also, we 

have computed a singularity distribution method 

to solve the counterpart of inviscid-flow problem. 

In order to investigate the effect of viscosity in 

the radiation hydrodynamic problem, we com- 

pare the results of heave force in viscous and 

inviscid fluids. Figures 9 and 10 show the added 

mass (M~) and damping force coefficients (Nn) 

corresponding to the different amplitude (za)= 

10 and 30 mm at same submergence depth ( d = 4 0  

mm). By comparing these results, the results due 

to the numerical simulation based on the compo- 

site grid method agree well with the experimental 

ones regardless of the amplitude and oscillation 

periods. On the other hand, the results due to 

the linear potential theory agree with those of 

others at the short oscillation periods. However, 

we notice that the linear theory results consi- 

derably deviate from the others at the long oscil- 

lation periods. In general, it is noted that the 
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differences between the linear theory and experi- 

ments increase at the large amplitude of oscil- 

lation (z~=30 mm). It can be observed that the 

components of viscous damping force are larger 

than those of wave damping force at the long 

oscillation periods. In summary, these results se- 

em to confirm that the effect of viscosity on the 

hydrodynamic force is significant at the long 

oscillation periods. 

It is noted that the added mass takes negative 

value for intermediate oscillation periods, Re- 

sponse amplitude of the submerged plate is in- 

versely proportional to both the restoring force 

and inertia force• Thus the negative added mass 

means the increase of restoring force. Therefore 

the submerged plate has the effect of reducing 

the hydroelastic deformation of VLFS for longer 

waves. 

The added mass (Mn) and damping force co- 

efficients (Nn) are shown in Figs. 11 and 12 for 

the different submergence depth ( d ) = 4 0  and 60 

mm at same amplitude (2a=20 mm). From Figs. 
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11 and 12, we notice that the deviations of the 

linear theory results become larger with decrease 

of submergence depth. This means that the ra- 

diation force becomes highly nonlinear at the 

long oscillation periods due to increase of the 

viscous damping forces, and the free surface effect 

increases when the submerged plate come close 

to the free surface. Also we can observe the nega- 

tive added mass for the intermediate oscillation 

periods at the shallow submergence depth ( d  = 

40 mm). On the other hand, the negative added 

mass become smaller due to decrease of free sur- 

face effect at the deep submergence depth ( d - -  

60mm).  Finally, we compare the results of 

damping forces between the shallow ( d = 4 0  mm) 

and deep ( d = 6 0 m m )  submergence depth. As 

fore mentioned, we notice that the effect of vis- 

cosity on the hydrodynamic force is rather small 

at the short oscillation periods but quite signifi- 

cant at the long oscillation periods. 

5. Conclusion 

In this study, we have developed a numerical 

method for the hydrodynamic forces on the sub- 

merged plate oscillating near a free surface using 

the composite grid method. Then we have per- 

formed the numerical simulation to estimate the 

radiation forces. The simulation results show 

good agreement with the experimental ones. This 

confirms that the present method is reliable and 

accurate. We observed the occurrence of negative 

added mass at intermediate oscillation periods, 

which could have reduced the hydroelastic defor- 

mation of VLFS. Finally, we have evaluated the 

effect of viscosity by comparing with the linear 

theory. As a result, it is noted that the effect of 

viscosity on the hydrodynamic forces is signifi- 

cant at the long oscillation periods, especially the 
deviations between the linear and nonlinear cases 

are strongly dependent on the amplitude and 

submergence depth. 

Although only heave motion is considered 

here, this numerical method can be extended to 

the other motion modes such as surge and pitch, 

or their combination. 

In near future, we will apply this method to the 

multiple bodies such as VLFS with the sub- 

merged plate to obtain the performance of VLFS. 
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